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Vespa.ai

An open-source platform for 
low latency computations 
over large, evolving data

Apache 2.0 Licensed
https://github.com/vespa-engine/vespa 

➔ Search, filter and rank structured and 
unstructured data

➔ Dense and sparse representations

➔ Scalable in any dimension

➔ Multiphase retrieval & ranking

◆ Dense HNSW - nearest neighbor search

◆ Sparse WAND

◆ Hybrid combinations 

➔ Tensors and ML are first class citizens 

➔ Real-time Indexing and true partial updates 

➔ Elastic content scalability (no pre-sharding)

@vespaengine



This talk 

- Highlight common pitfalls
- Pre-trained Language Models (PLM) 
- Quick overview of neural search using PLM 

- Three neural models built on pretrained language models (PLM) 
- Text embedding models and embedding retrieval  



Not in this talk 

- Retrieval Augmented Generation (RAG)
- Generative Large Language Models (GPT, LLAMA)



Pretrained Language Models (PLM)

- Attention is All you Need (Google 2017) 
- BERT (Bidirectional Encoder Representations from Transformers)
- Trained using masked word language objective 

 The cat sits on the [MASK] looking at the [MASK]
- Masking objective is genius - Enables self-supervision with large corpuses of 

text
- Pre-trained model weights uses as starting weights for downstream tasks

- Search 
- Classification 
- And more



Transfer Learning 101 



Language Model

A tokenizer + fixed 
vocabulary

A deep neural network 
architecture 

Small, medium, large, xxx 
large?



LM Tokenization
Happy Path Tokenization

10 words maps to 10 token ids 

Dog



LM 
tokenization

- Different 
tokenizer 
implementations

- Tied to model 
- Fixed vocabulary 

size 
- Learned “word” 

embedding 
vectors per word 
in vocab

- Vocab fixed 
before 
pre-training of 
neural network 
weights



LM Tokenization
Are LM insensitive to spelling mistakes?  



LLM tokenization impact vector 
representation

annoyance => annoyance 

anoyance => ['an', '##oya', '##nce'] 

annyoance => ['ann', '##yo', '##ance']

Variant and tokens 

frustration, anger, rage (0.91)

loyalty, consciousness, treasure (0.83)

anniversary, old age, tendency (0.84)

Top-3 retrieved words (vector search over WordNet)

WordNet® is a large lexical database of English. Nouns, verbs, 
adjectives and adverbs are grouped into sets of cognitive synonyms 
(synsets), each expressing a distinct concept.

http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(annoyance)&collapsefield=word
http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(anoyance)&collapsefield=word
http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(annyoance)&collapsefield=word


LM tokenization
Linguistics and language matters !(?)

- Multilingual 
- English 

Not that many language specific LM 
models (except for English)  

Don’t know newer words

- 2023 (202, ##3)
- Covid-19 (co,##vid,-, 19)
- GPT (gp, ##t) 



Applying LMs to search 



Searching over data with sublinear complexity 

Conceptual representational model for retrieval

● Representation of queries and 
documents 

○ So that relevant documents 
for a query is scored higher 
than irrelevant documents

● Dense/Sparse/Mixed
● Score(Q,D) complexity 

constraints
● Supervised (learned) versus 

unsupervised 



Motivation for representational approach  

Avoid scoring all documents D in collection for a query Q 

Docs

Query

for_each Score(Q,D) Ranked 
docs Sort



Motivation for representational approach  

Avoid scoring all documents D in collection for a query Q 

Docs

Query

Index 
docs

Score(Q,D) Ranked 
docs Sort

“Index”



Make it more concrete

Logical representation versus physical implementation. 

Accelerating scoring over sparse representations

- Build Inverted Index data structures 
- Search accelerated with algorithms like WAND, MaxScore, BM-WAND++

Accelerating scoring over dense representations

- Build Vector Index (IVF, Quantization, HNSW, ++)
- Search accelerated with algorithms tied to vector index structure



Also: Phased retrieval and ranking 

 Effective candidate retrievers 
Accelerated (limited choice of scoring function) 

First phase ranking

Second phase 
ranking

global-phase 
ranking

Billions

Millions

Thousands

100s 



3 Neural Methods for Search using LM

All methods require - Labeled examples - usually triplets 

<query, relevant document, irrelevant document> 

Pre-trained 
Model Train

Examples

Fine-tuned 
Model



Cross-Encoder
Encodes both query and document at 
the same time (cross)

all-to-all attention between all tokens in 
query and document

Most effective on IR benchmarks 
(nDCG)

High compute complexity (n^2)

No efficient way to “index”

  



Bi-Encoder
Encode queries and documents 
independently

No token level attention between query 
and document (no cross)

Enables indexing documents offline

Sim(Q,D):

- Dot product (sparse or dense)
- Cosine/Euclidean/Hamming/Ma

ny

  



Bi-Encoder

Output Pooling

From a token vector 
representations to a vector 
representation of a 
sequence

- Average?
- 101/CLS token?

  



Bi-Encoder adv

Learn token vectors 
instead of sequence 
vectors

Not pooled 
  



Learned representations - No better than the examples?

Remember: The representation of queries and documents are learned 

- Your data might not look like the examples 

 



Data the vector model was trained on

Photo by Vidar Nordli-Mathisen on 
Unsplash

https://unsplash.com/es/@vidarnm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/road?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/road?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Photo by Oskar Kadaksoo on Unsplash

Your data

https://unsplash.com/@oskark?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cockpit-landing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


TLDR; Neural 
Methods for 
Retrieval & Ranking 

Accuracy versus cost 

Model not better than the 
examples it was trained on

Explain/score interpretability 
difficult with pooled 
representations

Introducing Neural Bag of 
Whole-Words with ColBERTer

https://arxiv.org/abs/2203.13088



Off-the-shelf text-embedding models

- Size of model
- Embedding dimensionality
- Sequence length
- Quality/Accuracy (for your use 

case)
- Language capabilities
- Licence/Commercial use



MTEB (massive 
text embedding 
benchmark) 

Great guide 

Many different tasks

https://huggingface.co/spaces/mt

eb/leaderboard 

Benchmark hacks?

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


Embedding Retrieval

Embedding inference + Retrieval

Model size (GPU needed?)

Sequence length scaling 

Dimensionality 

1536 dims (4x cost of 384)

Not 4x accuracy !



Vector Search 

Brute Force Search Might Be All You 
Need?

Assume 64GB/s memory bandwidth 

1M vectors with1536 dimensions using 
float is approx 6GB

Quiz: How many QPS can one node 
support at max?



The A in ANN 

Approximate search instead of brute-force search

Speed up retrieval, by building an index, sounds familiar? 

Many different ANN algorithms and associated tradeoffs 

- Query speedup 
- Quality (What is the error introduced by approximate search)
- Real-time (Mutatable, grow from to zero to N) 
- Resource footprint, index build time 



Exact and 
Approximate 
(recall@k)

Overlap@k is a better 
name for us working 
with search metrics



Impact of ANN choice & parameters on search quality

Our search quality metrics 

- Recall (Are we finding all the relevant hits)
- Precision (Are we finding nothing but relevant?)



LADR 

https://arxiv.org/abs/2307.16779, BM25 on DL19 is about 0.55 NDCG@10

https://arxiv.org/abs/2307.16779






TLDR;

- Tokenization and vocabulary 
matters 

- Language matters
- Representations, 

representations, 
representations

- Your data (queries and 
documents) might not match 
training examples

- Embedding inference
- Sequence length
- Dimensionality

- Embedding retrieval (vector 
search) 

- Brute force versus approximate

- Approximate Search Does 
Introduce Errors.. 



Resources

Lots on Blog.vespa.ai, for example

https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/

https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with
-vespa/

https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/
https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with-vespa/
https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with-vespa/


Hated it? Tweet me

Jo Kristian Bergum          jobergum 


