A Practical Approach for Few Shot Learning with SetFit for Scaling Up Search and Relevance Ranking o a Large Text Database

the search relevance conference www.haystackconf.com

About me

Fernando Vieira da Silva

CEO of N2VEC

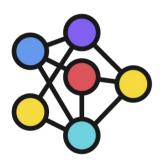
PhD in Artificial Inteligence (NLP)

+17 Years of experience in R&D

+ 8 Years of working experience in NLP

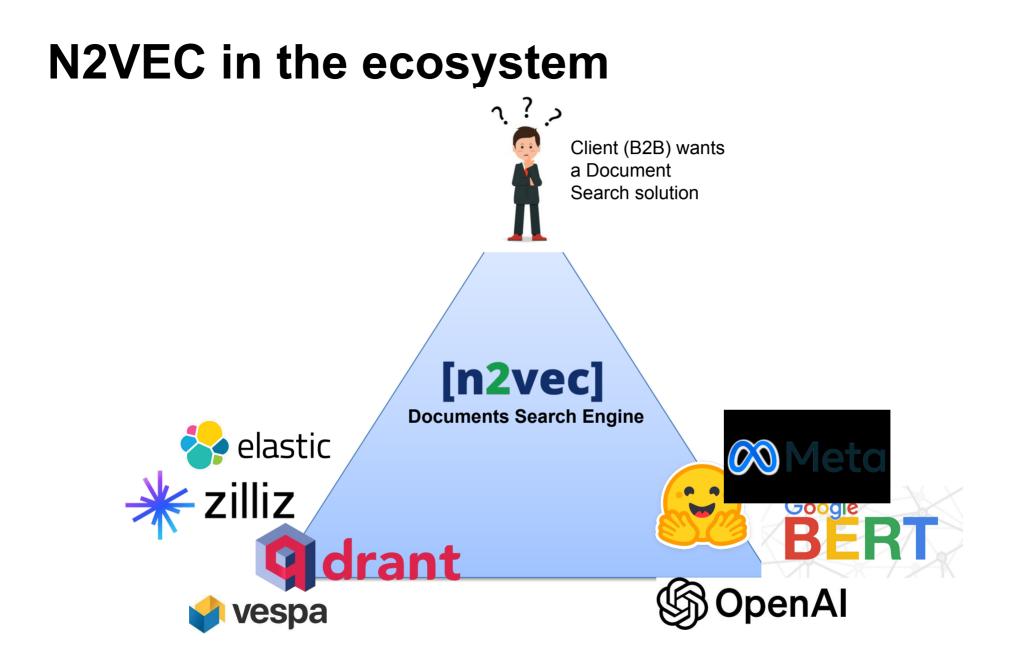
About N2VEC

We developed a Search API for Documents or knowledge database



Our API uses Vector Databases and BERT for searching and ranking

We are based near São Paulo, Brazil



The Problem

Handling data with few labels...

SetFit

Few-shot Fine tuning of SentenceTransformers

Competitive results compared to GPT and others

Light and fast to train (you can train in your laptop)

Multilingual support

SetFit

Efficient Few-Shot Learning Without Prompts

Lewis Tunstall¹, Nils Reimers², Unso Eun Seo Jo¹, Luke Bates³, Daniel Korat⁴, Moshe Wasserblat⁴, Oren Pereg⁴

¹Hugging Face ²cohere.ai ³Ubiquitous Knowledge Processing Lab, Technical University of Darmstadt ⁴Emergent AI Lab, Intel Labs ¹firstname@huggingface.com ²info@nils-reimers.de ³bates@ukp.informatik.tu-darmstadt.de

⁴firstname.lastname@intel.com

Abstract

Recent few-shot methods, such as parameterefficient fine-tuning (PEFT) and pattern exploiting training (PET), have achieved impressive results in label-scarce settings. However, they are difficult to employ since they are subject to high variability from manually crafted prompts, and typically require billionparameter language models to achieve high accuracy. To address these shortcomings, we propose SETFIT (Sentence Transformer Finetuning), an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers (ST). SETFIT works by first finetuning a pretrained ST on a small number of

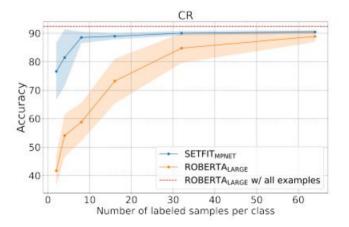
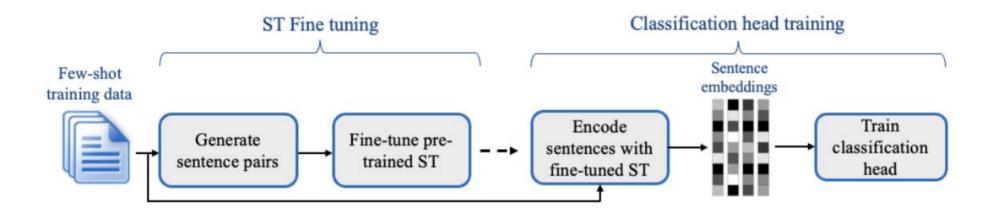


Figure 1: Compared to standard fine-tuning, SETFIT is more sample efficient and exhibits less variability when trained on a small number of labeled examples.

SetFit for Classification problems



SetFit Fine tuning and training blocks (extracted from the original article)

SetFit – Generate Sentence pairs

Origina	al data
X	У
[0.1, 0.2, 0.3]	А
[0.4, 0.5, 0.6]	В
[0.1, 0.3, 0.3]	А
[0.1, 0.5, 0.6]	А
[0.4, 0.4, 0.6]	С

X1	X2	Y
[0.1, 0.2, 0.3]	[0.1, 0.3, 0.3]	1
[0.1, 0.3, 0.3]	[0.1, 0.5, 0.6]	1

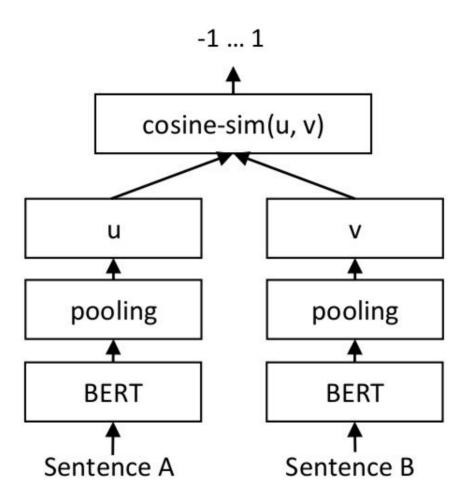
Depitive triplate

Negative triplets

X 1	X2	Y
[0.1, 0.2, 0.3]	[0.4, 0.4, 0.6]	0
[0.1, 0.3, 0.3]	[0.4, 0.5, 0.6]	0

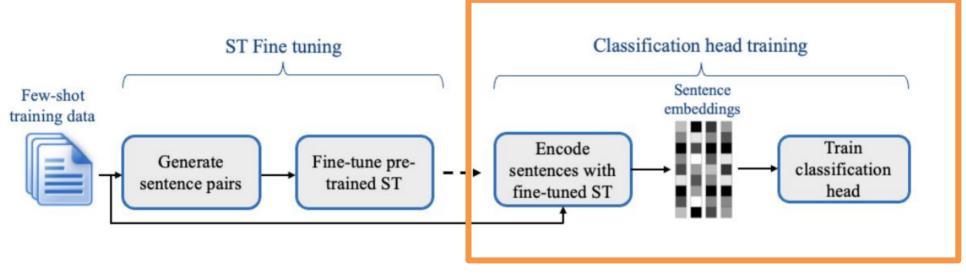
Total: K(K-1) / 2

SetFit – Sentence Transformers



Reference: https://www.sbert.net/docs/training/overview.html

SetFit for Classification Problems



SetFit Fine tuning and training blocks (extracted from the original article)

SetFit - results

Method	SST-5	AmazonCF	CR	Emotion	EnronSpam	AGNews	Average [†]
			$ N = 8^*$				
FINETUNE	33.52.1	9.24.9	58.86.3	$28.7_{6.8}$	85.06.0	81.73.8	43.05.2
PERFECT	34.93.1	$18.1_{5.3}$	81.58.6	29.85.7	79.37.4	80.85.0	48.76.0
ADAPET	50.01.9	19.47.3	91.0 _{1.3}	46.23.7	85.13.7	85.1 _{2.7}	58.33.6
T-FEW 3B	55.0 [*] _{1.4}	19.03.9	92.1 _{1.0}	57.4 1.8	93.1 _{1.6}	_	63.4 1.9
SETFITMPNET	43.63.0	40.311.8	88.51.9	$48.8_{4.5}$	90.1 _{3.4}	82.92.8	62.34.9
			$N = 64^*$				
FINETUNE	45.96.9	52.812.1	88.91.9	65.017.2	95.9 _{0.8}	88.40.9	69.77.8
PERFECT	49.10.7	65.1 _{5.2}	92.20.5	61.72.7	95.41.1	89.0 0.3	72.71.9
ADAPET	54.10.8	$54.1_{6.4}$	92.60.7	72.02.2	96.00.9	88.00.6	73.82.2
T-FEW 3B	56.0 _{0.6}	34.74.5	93.1 _{1.0}	70.91.1	97.0 _{0.3}	<u> </u>	70.31.5
SETFITMPNET	51.9 _{0.6}	61.9 _{2.9}	90.4 _{0.6}	76.2 _{1.3}	96.1 _{0.8}	88.00.7	75.3 _{1.3}
		N	$ V = Full^*$	*			
FINETUNE	59.8	80.1	92.4	92.6	99.0	93.8	84.8

Table 2: SETFIT performance score and standard deviation compared to the baselines across 6 test datasets for three training set sizes |N|. *Number of training samples per class. **Entire available training data used. [†]The AGNews dataset is excluded from the average score to enable fair comparison with T-FEW (which has AGNews in its training set). *The inputs of SST-5 (but not its labels) appeared in T-FEW's training set, as part of Rotten Tomatoes dataset.

Rank	Method	Score	Size*
1	YIWISE	76.8	-
2	T-FEW 11B	75.8	11B
4	Human baseline	73.5	121
6	SETFITROBERTA	71.3	355M
9	PET	69.6	235M
11	SETFITMPNET	66.9	110M
12	GPT-3	62.7	175B

Table 3: SETFIT compared to prominent methods on the RAFT leaderboard (as of Sept. 5, 2022). *Number of parameters.

Tables extracted from the original article

Could SetFit be Applied for Search Relevance?

Legal Research

Good precedents more chances to WIN!!!

Legal Research

65% of lawyers spend most of their **TIME** doing **Legal Research**

75% of lawyers say Legal Research is the HARDEST task

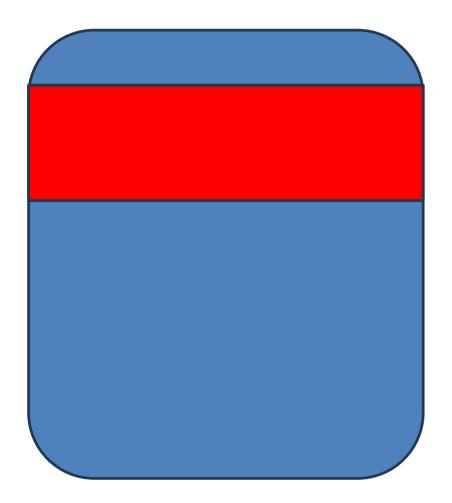
Our Legal Research Database

+ 60 million sentences extracted from legal decisions

Precedents from 8 courts in Brazil

+ 7,800 results annotated by lawyers

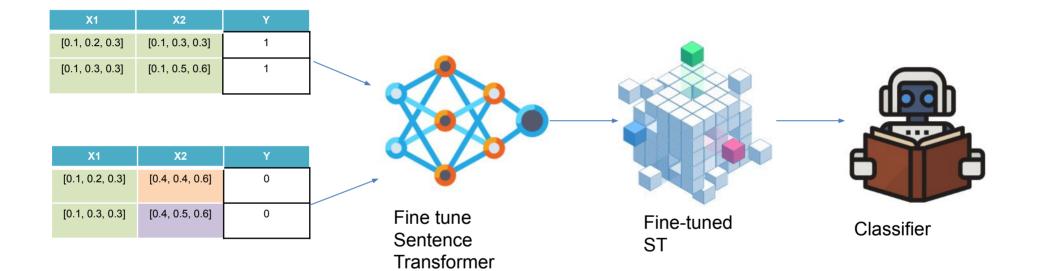
First Step: Using SetFit for sentences Classification



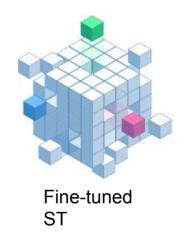
A fraction of the dataset was labeled according to the theme (i.e. "traffic accident", "consumer rights", "health")

But too many classes with few labels each... (9K split in 138 classes)

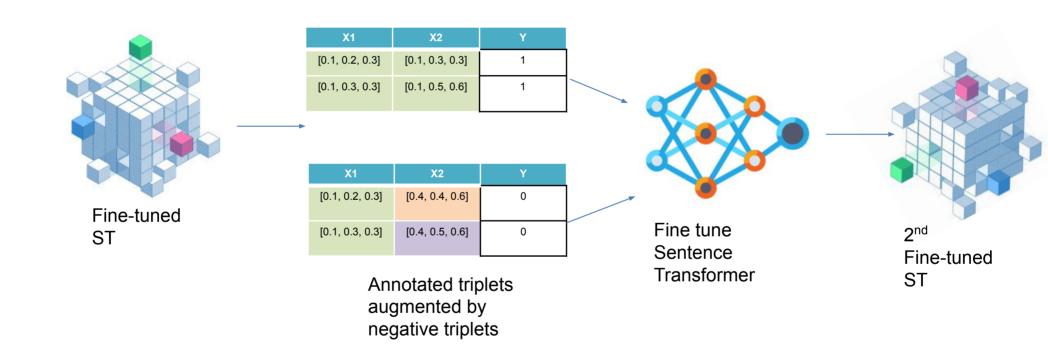
First Step: Using SetFit for sentences Classification



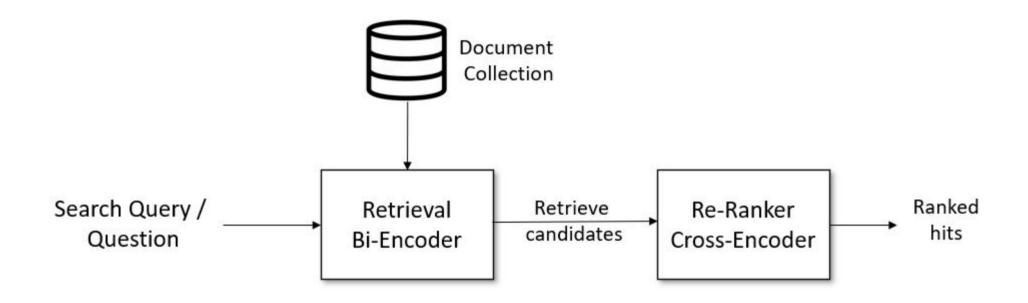
First Step: Using SetFit for sentences Classification



Second Step: Fine tuning with queries/results

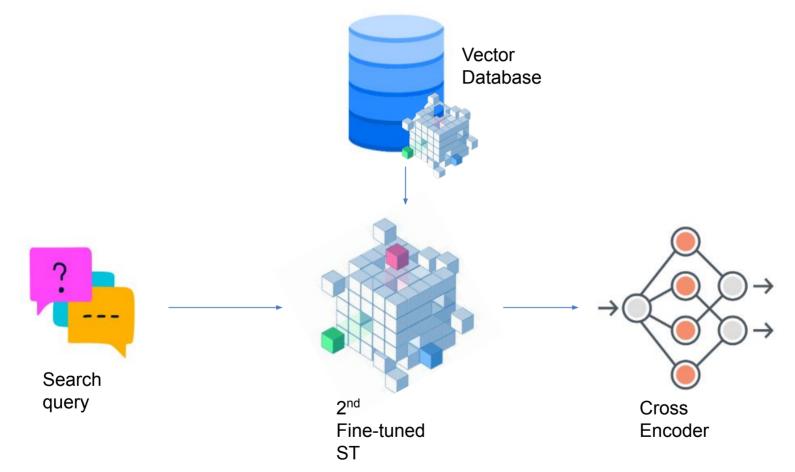


Third Step: Implement Search and Ranking



Reference: https://www.sbert.net/examples/applications/information-retrieval/README.html

Third Step: Implement Search and Ranking



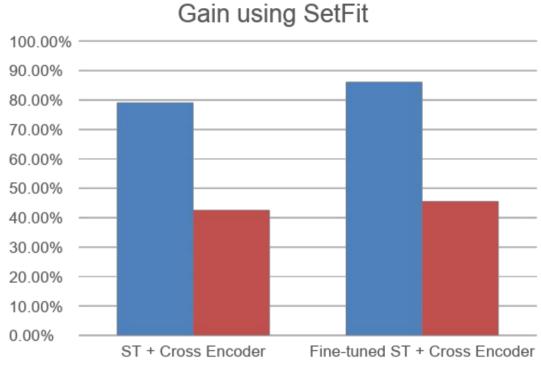
Results

ST + Cross Encoder

79.1% of questions with relevant answers in top 542.6% of relevant answers in top 5

Fine-tuned ST + CrossEncoder

86.1% of questions with relevant answers in top 545.6% of relevant answers in top 5



Questions with relevant answer in top 5

Acknowledgement

N2VEC Team:

Pedro Kim Machine Learning Engineer

Gustavo Sarti Machine Learning Engineer

Yara Campos Data Enginer

Alfonso Guerra Python SW Engineer

[n2vec]

fernando@n2vec.com +55 15 98801 2165